Aplication of Order 4 Runge-Kutta Method to Modeling Monkeypox Transmission

  • Dian Grace Ludji Universitas Timor
  • Febrya Christin Handayani Buan Faculty of Agriculture, Timor University
Keywords: Monkey Pox, Mathematical Models, Runge-kutta method.

Abstract

Monkeypox is a zoonotic infectious disease caused by the monkeypox virus which belongs to the Orthopoxvirus group. This virus was originally transmitted from animals who innfected with the monkeypox virus to humans, especially rodents and primates. In addition, it can also be transmitted between humans.  To make it easier to describe the process of the spread of monkeypox, a mathematical model was created. The mathematical model was made by taking several assumptions based on the nature of charateristics of monkeypox, especially on the pattern of the spread of monkeypox. Based on the assumptions made, this model has two parts to the population, namely the human population is divided into four subpopulations and the animal population is divided in two subpopulations. The model produces a system of non-linear equations that is solved using the Runge-Kutta method of orde 4. The result obtained in this study is a simulation in graphical form. Two simulations were carried out using different  parameter values. The parameter  is the rate of human infection from animals. The simulation results show that when the value of the human infection rate from animals is reduced, the disease will disappear within a certain time. So that, one of the factor that can be suppressed so that the spread of monkeypox is controlled is the rate of human infection from animals.

Downloads

Download data is not yet available.

References

Brika Enkekes, Y., & Mardianto, L. (2022). Metode Runge-Kutta Orde 4 Dalam Penyelesaian Persamaan Gelombang 1D Syarat Batas Dirichlet. Original Article Indonesian Journal of Applied Mathematics, 2(1), 1–8. https://journal.itera.ac.id/index.php/indojam/

Fredlina, K. Q., & Werthi, K. T. (2018). PEMODELAN MATEMATIKA DENGAN METODE RUNGE KUTTA UNTUK PENYAKIT CAMPAK MENGGUNAKAN MATLAB R2010a. Jurnal Teknologi Informasi Dan Komputer, 4(02).

Hurit, R. U., & Resi, B. B. F. (2022). PENYELESAIAN MODEL SIR UNTUK PENYEBARAN PENYAKIT HIV/AIDS MENGGUNAKAN METODE EULER DAN METODE HEUN. Seminar Nasional Pendidikan Matematika, 3(01).

Hurit, R. U., & Sudi Mungkasi. (2021). The Euler, Heun, and Fourth Order Runge-Kutta Solutions to SEIR Model for the Spread of Meningitis Disease. Mathline : Jurnal Matematika Dan Pendidikan Matematika, 6(2), 140–153. https://doi.org/10.31943/mathline.v6i2.176

Kemenkes RI. (2022). Kasus Monkeypox Pertama di Indonesia Terkonfirmasi.

Ludji, D. G., Sianturi, P., & Nugrahani, E. (2019). Dynamical System of the Mathematical Model for Tuberculosis with Vaccination. ComTech: Computer, Mathematics and Engineering Applications, 10(2). https://doi.org/10.21512/comtech.v10i2.5686

Luthfiani, D. D., Sianturi, P., Kusnanto, A., & Sumarno, H. (2022). PENGARUH LAJU PENULARAN PENYAKIT DAN RATARATA KONTAK INDIVIDU PADA MODEL KO-INFEKSI HIV/AIDS DAN CACAR MONYET (MONKEYPOX). MILANG, 18(01).

PC, E., MO, O., FY, E., & BG, B. (2018). Mathematical Model for Monkeypox Virus Transmission Dynamics. Epidemiology: Open Access, 08(03). https://doi.org/10.4172/2161-1165.1000348

Qelina, L., & Graharti, R. (2019). Human Monkeypox Virus : Respon Kesiapan Darurat Dunia. Medula, 9(03).
WHO. (2022). Multi-country monkeypox outbreak: situation update. Https://Www.Who.Int/Emergencies/Disease-Outbreak-News/Item/2022-DON396
Published
2023-01-07
How to Cite
Ludji, D., & Buan, F. C. (2023). Aplication of Order 4 Runge-Kutta Method to Modeling Monkeypox Transmission. Jurnal Saintek Lahan Kering, 5(2), 24-26. https://doi.org/https://doi.org/10.32938/slk.v5i2.1981
Section
Original research article