Biochar from lac tree, acacia, and eucalyptus biomass as lettuce (Lactuca sativa l.) seedling media

  • Origenes Boy Kapitan Faculty of Agriculture, The University of Timor
  • Anna Tefa Faculty of Agriculture, The University of Timor
  • Dewi S. Hede Faculty of Agriculture, The University of Timor
  • Filogus N. Payon Laboratory of the Faculty of Agriculture, The University of Timor
Keywords: Biochar, Woody biomass, Lactuca sativa, Seedling media, Seed viability

Abstract

Seedling media is one of the factors that influence seed germination. The requirements for seed germinating are media constituent material have a porosity for water retention and air circulation. One of the porous material that can be used as seedling media is biochar. Characteristic of biochar depend on the pyrolisis temperature and the type of biomass. This study aims to determine the percentage conversion of biomass from 3 types of woody biomass to biochar, the chemical characteristics of biochar resulting from pyrolysis at 3 different temperatures, viability of lettuce seeds on seedlings media with biochar, soil, and compost. This study used a factorial completely randomized design that was repeated 3 times. The first factor is the type of woody biomass which consists of 3 levels, namely lac tree, eucalyptus, and acacia. While the second factor is the pyrolisis temperature which consists of 3 temperature variations namely 350 oC, 450 oC, and 550 oC. The results showed that the higher percentage of biochar yield was produced on the type of lac tree with pyrolysis temperature at 350 oC. Biochar pH is alkaline except for biochar from lac tree with pyrolysis temperature at 350 oC. The highest EC value is produced by eucalyptus biochar with a pyrolysis temperature at 550 oC. The type of eucalyptus biochar has C-total, N, P, and K content greater than the other, while the largest CEC value is produced by the type of lac tree biochar. The best seed germination of lettuce is produced by eucalyptus biochar at pyrolysis temperature on 450 oC. Generally, the type of acacia wood biochar gives the best germination in all pyrolisis temperatures.

Downloads

Download data is not yet available.

References

Berek A.K., Hue N.V. 2016. Characterization of biochars and their use as an amandment to acid soils. Soil Sci. 181: 412-426.

Bourke J., Manley-Harris M., Fushimi C., Dowaki K., Nunoura T., Antal Jr M.J., 2007. Do all carbonized charcoals have the same chemical structure? 2. A model of the chemical structure of carbonized charcoal. Ind. Eng. Chem. Res. 46: 5954-5977.

Braine J.W., urcio G.R., Wachowicz C.M., Hansel F.A. 2012. Allelopathic effects of Araucaria angustifolia needle extracts in the growth of Lactuca sativa seeds. Journal of Forest Research 17: 440-445.

Buss, W., Ondrej, M. 2014. Mobile organic compounds in biochar –A potential source of contamination-phytotoxic effects on cress seed (Lepidium sativum) germination. J Environ Manage. 137: 111-119.

Cantrell K. B., Hunt P. G., Uchimiya M., Novak J. M., Ro K. S., 2013. Impact of pyrolisis temperature and manure source on physicochemical characteristics of biochar. J.biortech. Vol 107: 419-428.

Chan, K. Y., Xu, Z. 2010. Biochar: Nutrient properties and their enrichment. In biochar for environmental management: Science and technology, Ed. Lehman J, and Joseph S. London (UK): Earthscan.

Claoston, N., Samsuri, A. W., Ahmad Husni, M. H., Mohd Amran, M. S. 2014. Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars. Waste Management & Research. 32 (4): 331-339.

Copeland, L. O., Mc Donald, M.B. 2001. Principles of seed science and technology. London (UK): Kluwer Academic Publishers.

Denyes, M. J., Parisien, M. A., Rutter, A., Zeeb, B. A. 2014. Physical, chemical, and biological characterization of six biochars produced for the remediation of contaminated sites. J Vis Exp. 93:52183.

Deska, J., Jankowski, K., Bombik, A., Jankowska, J. 2011. Effect of growing medium pH on germination and initial development of some grassland plants. Acta Scientiarum Polonorum Agricultura. 10: 45-56.

Gasco, G., Cely, P., Paz-Ferreiro, J., Plaza, C., Mendez, A. 2016. Relation between biochar properties and effect on seed germination and plant development. Biological agriculture & Horticulture. 32: 237-247.

Gaskin, J. W., Steiner, C., Harris, K., Das, K. C., Bibens,B. 2008. Effect of low temperature pyrolysis conditions on biochar for agriculture use. Transaction of the Asabe. 51: 2061-2069.

[ISTA] International Seed testing Association. 2014. International Rules for Seed Testing. ISTA. Basserdorf.

Jones K., Sewart A. 1997. Dioxins and furans in sewerage sludge: a review of their occurance and sources in sludge and of their environmental fate, behaviour, and significance in sludge-amanded agricultural system. Critical Reviews in Environmental Science and Technology 27:1-85.

Kuriakose S.V., Prasad M.N.V. 2008. Cadmium stress affects seed germination and seedling growth in Sorghum bicolor(L.) Moench by charging the activities of hydrolizing enzymes. Plant Growth Regulation. 54:143-156.

Lehman J., 2007. A handful of carbon. Nature. Vol 447:143-144.

Lehman J., Joseph S., 2009. Biochar for environmental management: an introduction. In Biochar for environmental management: Science and Technology; Lehman J., Joseph S., Eds. Earthscan. London.

Novak, J. M., Busscher, W. J., Watts, D. W., Amonette, J., Ippolito, J. A., Lima, I. M., Gaskin, J., Das, K. C., Steiner, C., Ahmedna, M., Rehrah, D., Schomberg, H. 2012. Biochars impact on soil-moisture storage in an ultisol and two aridisols. Soil Science. 177: 310-320.

Oh T.K., Shinogi Y., Chikushi J., Lee Y.H., Choi B. 2012. Effect of aqueous extract of biochar on germination and seedling growth of lettuce(LactucasativaL.). J. Fac. Agr, kyushu Univ. 57 (1): 55-60.

Olszyk, D. M., Shiroyama, T., Novak, J. M.,Johnson, M. G. 2018. A rapid-test for screening biochar effects on seed germination. Commun Soil Sci Plant Anal. 49 (16): 2025-2041.

Rehrah, D., Reddy, M. R., Novak, J. M.,Bansode, R. R., Schimmel, K. A., Yu, J., Watts, D. W., Ahmedna, M. 2014. Production and characterization of biochars from agricultural by-products for use in soil quality enhancement. Journal of analytical and applied pyrolysis. 108: 301-309.

Rogovska, N., Laird, D., Cruse, R. M., Trabue, S., Heaton, E. 2011. Germination test for assesing biochar quality. Journal of environmental quality. 41: 1014-1022.

Ryder, E.J. 2006. Lettuce, p.377-379. In M. Blcak, J.D. Bewley, and P. Halmer (eds.). The encylopedia of seeds science, technology and uses. CAB International. Wallingford. UK.

Sadaka, S., Sharara, M.A., Ashworth, A., Keyser, P., Allen, F., Wright, A. 2014. Characterization of biochar from switchgrass carbonization. Energies. 7: 548-567. Doi: 10.3390/en7020548.

Sadjad, S. 1994. Kuantifikasi Metabolisme Benih. Jakarta (ID): PT. Gramedia Widiasarana Indonesia.

Stefanidis, S. D., Kalogiannis, K. G., Illiopoulou, E. F., Michailof, C. M., Pilavachi, P. A., Lappas, A. A. 2014. A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose, and lignin. J. Anal. Appl. Pyrolysis. 105: 143-150.

Sumiasri N., Setyowati, N., 2006. Pengaruh beberapa media pada pertumbuhan bibit eboni(Diospyros celebicaBakh) melalui perbanyakan biji. Biodiversitas. 7(3):260-263.

Titiladunayo, I. F., McDonald, A. G., Fapetu, O. P. 2012. Effect of temperature on biochar product yield from selected lignocellulosic biomass in a pyrolysis process. Waste Biomass Valor. 3: 311-318.

Thecher, D., Martinez-Chois, C., Laval-Gilly, P., Henry, S., Bennasroune, A., D’Innocenzo, M., Falla, J. 2012. Assesment of Miscanthus x giganteus for rhizoremediation of long term PAH contaminated soils. Appl Soil Ecol. 62: 42-49.

Thies, J. E., Rillig, M. C. 2009. Characteristic of biochar: Biological properties. In biochar for environmental management: Science and technology, Ed. Lehman J, and Joseph S. London (UK): Earthscan.

Trupiano D., Cocozza C., Baronti S., Amendola C., Vaccari F.P., Lustrato G., Lonardo S.D., Fantasma F., Tognetti R., Scippa G.S. 2017. The effects of biohar and its combination with compost on lettuce (Lactuca Sativa L.) growth, soil properties, and soil microbial activity and abundance. International Journal of Agronomi.

Wan Q., Yuan J.I.I., Xu R.K., Li X.I.I. 2014. Pyrolisis temperature influences ameliorating effects on acidic soil. Environ. Sci. Pollut. Res. Int. 21: 2486-2495.

Wuryaningsih S., Darliah. 1994. Pengaruh media sekam padi terhadap pertumbuhan tanaman hias pot Spathiphllum. Bul. Penel. Tan. Hias II (2) : 119-129.

Wyse S.V., Burns B.R. 2013. Effects of Agathis australis (New Zealand kauri) leaf litter on germination and seedling growth differs among plant spesies. New Zealand Journal of Ecology. 37 (2): 178-183.

Yuan J. H., Xu R. K., Zhang H. 2011. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 102:3488-3497.

Yoshioka T., Endo T., Satoh S. 1998. Restoration of seed germination at supraoptimal temperatures by fluridone, an inhibitor of abscisic acid biosynthesis. Plant Cell Physiol. 39:307-312.
Published
2019-04-30
How to Cite
Kapitan, O., Tefa, A., Hede, D., & Payon, F. (2019). Biochar from lac tree, acacia, and eucalyptus biomass as lettuce (Lactuca sativa l.) seedling media. Savana Cendana, 4(02), 34-37. https://doi.org/https://doi.org/10.32938/sc.v4i02.620
Section
Original research article